Discrete Stochastic Submodular Maximization: Adaptive vs. Non-adaptive vs. Offline

نویسندگان

  • Lisa Hellerstein
  • Devorah Kletenik
  • Patrick Lin
چکیده

We consider the problem of stochastic monotone submodular function maximization, subject to constraints. We give results on adaptivity gaps, and on the gap between the optimal offline and online solutions. We present a procedure that transforms a decision tree (adaptive algorithm) into a non-adaptive chain. We prove that this chain achieves at least τ times the utility of the decision tree, over a product distribution and binary state space, where τ = mini,j Pr[xi = j]. This proves an adaptivity gap of 1 τ (which is 2 in the case of a uniform distribution) for the problem of stochastic monotone submodular maximization subject to state-independent constraints. For a cardinality constraint, we prove that a simple adaptive greedy algorithm achieves an approximation factor of (1 − 1 eτ ) with respect to the optimal offline solution; previously, it has been proven that the algorithm achieves an approximation factor of (1− e ) with respect to the optimal adaptive online solution. Finally, we show that there exists a non-adaptive solution for the stochastic max coverage problem that is within a factor (1− e ) of the optimal adaptive solution and within a factor of τ(1− e ) of the optimal offline solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Submodular Maximization

We study stochastic submodular maximization problem with respect to a cardinality constraint. Our model can capture the effect of uncertainty in different problems, such as cascade effects in social networks, capital budgeting, sensor placement, etc. We study non-adaptive and adaptive policies and give optimal constant approximation algorithms for both cases. We also bound the adaptivity gap of...

متن کامل

Non-Monotone Adaptive Submodular Maximization

A wide range of AI problems, such as sensor placement, active learning, and network influence maximization, require sequentially selecting elements from a large set with the goal of optimizing the utility of the selected subset. Moreover, each element that is picked may provide stochastic feedback, which can be used to make smarter decisions about future selections. Finding efficient policies f...

متن کامل

Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions

The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the c...

متن کامل

Deterministic & Adaptive Non-Submodular Maximizationvia the Primal Curvature

While greedy algorithms have long been observed to perform well on a wide variety of problems, up to now approximation ratios have only been known for their application to problems having submodular objective functions f . Since many practical problems have non-submodular f , there is a critical need to devise new techniques to bound the performance of greedy algorithms in the case of non-submo...

متن کامل

Adaptive Submodular Optimization under Matroid Constraints

Many important problems in discrete optimization require maximization of a monotonic submodular function subject to matroid constraints. For these problems, a simple greedy algorithm is guaranteed to obtain near-optimal solutions. In this article, we extend this classic result to a general class of adaptive optimization problems under partial observability, where each choice can depend on obser...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015